

Electricity 2 Answers – NAT 5

1) a) 2116Ω.

b) 529Ω.

2) a)

b) Resistance.

c) i)

I(A)	V(V)	$R(\Omega)$	IV	I ² R
2	12	6	24	24

ii) Power.

iii) Watts.

3) a) The mats are connected in parallel.

- b) 1.3A.
- c) Resistance of each mat = 177Ω .

Total resistance of the three mats in parallel = 59Ω .

4) a) 0.19A. (0.1875A)

b) 1.5V.

c) The current flowing in the circuit would decrease.

The voltage dropped across the 8Ω resistor would also decrease from V= IR.

5) a) i) 3A.

- ii) 24V.
- iii) 8Ω.
- b) i) 1.5Ω.
 - ii) A) The reading on the ammeter decreases.
 - B) When the variable resistor is removed, the total resistance in the circuit increases. As the resistance increases, the current flowing decreases.

6) a) 0.26A.

- b) i) 30.7Ω.
 - ii) 1723W.
 - iii) **S3 only**. This element has the largest resistance, so the current flow through this element would be low, giving it a low power.

7) a) 0.6A.

- b) 5Ω.
- c) 2.5Ω.
- d) 10Ω.
- e) i) The reading on the ammeter will decrease.
 - ii) When a lamp is removed from the parallel set up, the resistance will increase.

As the resistance increases, the current flow will decrease.

8) a) 72W.

- b) i) 24.2kWh.
 - ii) £3.63.

9) a) Lamp A as it has a lower resistance.

A lower resistance means a higher current and also a higher power rating.

b) 230W.

c)

d) i) 12V.

ii) 6Ω.

10) a)

b) 9.5Ω.

- c) Power developed in the resistor is calculated as 3.42W. The power developed is greater than the labelled power rating, so it overheats.
- d) **No**.

In parallel the voltage across each resistor is still the same, so the power will still be the same.

a) dc – the electrons flow around the circuit in one direction only. (from –ve to +ve)
ac – the electrons change direction every half cycle.

b) i) ac.

ii) 15W.

12) a) i) 56.3Ω.

ii) The resistance stays the same as the gradient of the graph of ${\bf I}$ against ${\bf V}$ is const.

The ratio of V/I for any of the plotted points will be the same, so R is constant.

b) i) $270\Omega + 390\Omega = 660\Omega$.

ii) 33 Ω and 56 Ω in parallel gives a total resistance = 20.8 Ω .

13) a) 0.2A.

- b) i) 20Ω.
 - ii) 60Ω >1.35W.
 - 30Ω -> 2.70W.
 - iii) The 30Ω resistor will overheat as it has more current flowing through it, with more power developed in it.
- c) No difference.

14) 7.5Ω.

15) a) 2 Ω.

b) 6A.