## **Heat Energy Answers – NAT 5**



1) a) i) Timer and thermometer.

Time interval and temperature change.

Conclusion which is definite.

b) Use a lid or insulate the mugs.

## 2) a) 5250J.

- b) The players' ankle.
- c) The coolant is changing state i.e it is melting from solid to liquid.
- d) To reduce the heat energy transfer **from** the surrounding air.

**NOT** to reduce the heat energy transfer to the surrounding air.

## **3)** a)

| Type of heat loss | Correct Insulation       |
|-------------------|--------------------------|
| Conduction        | Double Glazing           |
| Convection        | Loft Insulation          |
| Radiation         | Foil-backed plasterboard |

- b) i) Greatest 06:00
  - ii) Smallest 18:00
- **4)** a) 142,000J
  - b) i) 600,000J.
    - ii) 0.2kg.



- b) 3.61x10<sup>9</sup>J.
- c) i) 3.16x10<sup>9</sup>J.
  - ii) 3.95x10<sup>3</sup>s.
  - iii) Heat energy is lost to the surrounding air **or** lost from the furnace **or** used to heat the container.
- **6**) a) 899 Jkg<sup>-1</sup>°C<sup>-1</sup>.
  - b) 18,000s.
  - c) 200 rocks.
  - d) It would be easier.

The weight of the rocks on Mercury is smaller than that on Earth.

- **7)** a) i) 12°C.
  - ii) 108,000J
  - iii) 4,500Jkg<sup>-1</sup>°C<sup>-1</sup>.
  - b) i) Measured value of  $E_H$  is too large or  $\Delta T$  is too small. Heat energy is lost to the surrounding air or water is not heated evenly.
    - ii) Insulate beaker **or** use a lid **or** stir water or fully immerse the heater.
  - c) 360W.

- **8)** a)  $4.43 \times 10^{7} J$ .
  - b) 77.7kg.
  - c) i) Any renewable source.
    - ii) One advantage and one disadvantage of the renewable source used above.
- 9) a) The pupil assumes that all of the electrical energy stored in the capacitor is converted into heat energy in the oil.
  - b) A lot of the energy supplied from the capacitor will be lost to the surrounding air and to container holding the oil as heat energy.
- **10)** a) i)  $E_H = 3.34 \times 10^6 J$ .
  - ii) t = 1340 seconds.
  - iii) Not all of the heat energy is used to heat the water.
  - b) I = 10.9A.
  - c)  $E_H = 2.71 \times 10^6 J$ .