ELECTRICITY

Practice Exam Questions
Physics
Section 1—Questions

Speed of light in materials

Material	Speed in $\mathrm{m} \mathrm{s}^{-1}$
Air	3.0×10^{8}
Carbon dioxide	3.0×10^{8}
Diamond	1.2×10^{8}
Glass	2.0×10^{8}
Glycerol	2.1×10^{8}
Water	2.3×10^{8}

Gravitational field strengths

	Gravitational field strength on the surface in Ngg^{-1}
Earth	9.8
Jupiter	23
Mars	3.7
Mercury	3.7
Moon	1.6
Neptune	11
Saturn	9.0
Sun	270
Uranus	8.7
Venus	8.9

Specific latent heat of fusion of materials

Material	Specific latent heat of fusion in Jkg^{-1}
Alcohol	0.99×10^{5}
Aluminium	3.95×10^{5}
Carbon Dioxide	1.80×10^{5}
Copper	2.05×10^{5}
Iron	2.67×10^{5}
Lead	0.25×10^{5}
Water	3.34×10^{5}

Specific latent heat of vaporisation of materials

Material	Specific latent heat of vaporisation in Jkg^{-1}
Alcohol	11.2×10^{5}
Carbon Dioxide	3.77×10^{5}
Glycerol	8.30×10^{5}
Turpentine	2.90×10^{5}
Water	22.6×10^{5}

Speed of sound in materials

Material	Speed in $\mathrm{m} \mathrm{s}^{-1}$
Aluminium	5200
Air	340
Bone	4100
Carbon dioxide	270
Glycerol	1900
Muscle	1600
Steel	5200
Tissue	1500
Water	1500

Specific heat capacity of materials

Material	Specific heat capacity in $\mathrm{Jgg}^{-1} \mathrm{C}^{-1}$
Alcohol	2350
Aluminium	902
Copper	386
Glass	500
Ice	2100
Iron	480
Lead	128
Oil	2130
Water	4180

Melting and boiling points of materials

Material	Melting point in ${ }^{\circ} \mathrm{C}$	Boiling point in ${ }^{\circ} \mathrm{C}$
Alcohol	-98	65
Aluminium	660	2470
Copper	1077	2567
Glycerol	18	290
Lead	328	1737
Iron	1537	2737

Radiation weighting factors

Type of radiation	Radiation weighting factor
alpha	20
beta	1
fast neutrons	10
gamma	1
slow neutrons	3
X-rays	1

1. The voltage of an electrical supply is a measure of the

A resistance of the circuit
B speed of the charges in the circuit
C power developed in the circuit
D energy given to the charges in the circuit
E current in the circuit.
2. Four circuit symbols, $\mathrm{W}, \mathrm{X}, \mathrm{Y}$ and Z , are shown.

W

Which row identifies the components represented by these symbols?

	W	X	Y	Z
A	battery	ammeter	resistor	variable resistor
B	battery	ammeter	fuse	resistor
C	lamp	ammeter	variable resistor	resistor
D	lamp	voltmeter	resistor	fuse
E	lamp	voltmeter	variable resistor	fuse

3. A student suspects that ammeter A_{1} may be inaccurate. Ammeter A_{2} is known to be accurate.
Which of the following circuits should be used to compare the reading on A_{1} with A_{2} ?

A

B

C

D

E

1. Two circuits are set up as shown.

Both circuits are used to determine the resistance of resistor R .
Which row in the table identifies meter X , meter Y and meter Z ?

	meter X	meter Y	meter Z
A	ohmmeter	voltmeter	ammeter
B	ohmmeter	ammeter	voltmeter
C	voltmeter	ammeter	ohmmeter
D	ammeter	voltmeter	ohmmeter
E	voltmeter	ohmmeter	ammeter

2. Which of the following statements is/are correct?

I The voltage of a battery is the number of joules of energy it gives to each coulomb of charge.
II A battery only has a voltage when it is connected in a complete circuit.
III Electrons are free to move within an insulator.
A I only
B II only
C III only
D II and III only
E I, II and III
3. A circuit is set up as shown.

The resistance between X and Y is
A 1.3Ω
B 4.5Ω
C 6.0Ω
D 8.0Ω
E $\quad 12 \Omega$.
4. The rating plate on an electrical appliance is shown.

The resistance of this appliance is
A 0.017Ω
B 0.25Ω
C 4.0Ω
D 18.4Ω
E $\quad 57 \cdot 5 \Omega$.

1. The symbol for an electronic component is shown.

This is the symbol for
A an LDR
B a transistor
C an LED
D a photovoltaic cell
E a thermistor.
2. A uniform electric field exists between plates Q and R.

The diagram shows the path taken by a particle as it passes through the field.

Which row in the table identifies the charge on the particle, the charge on plate Q and the charge on plate R ?

	Charge on particle	Charge on plate Q	Charge on plate R
A	negative	positive	negative
B	negative	negative	positive
C	no charge	negative	positive
D	no charge	positive	negative
E	positive	positive	negative

3. A circuit is set up as shown.

The reading on ammeter A_{1} is 5.0 A .
The reading on ammeter A_{2} is 2.0 A .
The reading on ammeter A_{4} is 1.0 A .
Which row in the table shows the reading on ammeters A_{3} and A_{5} ?

	Reading on ammeter A_{3} (A)	Reading on ammeter A_{5} (A)
A	2.0	1.0
B	3.0	1.0
C	2.0	4.0
D	3.0	4.0
E	5.0	5.0

4. Two resistors are connected as shown.

The total resistance between P and Q is
A 0.17Ω
B 3.0Ω
C 6.0Ω
D 16Ω
E $\quad 32 \Omega$.
2. A circuit is set up as shown.

The reading on ammeter A_{1} is 5.0 A . The reading on ammeter A_{2} is 2.0 A . The charge passing through the lamp in 30 seconds is

A 0.1 C
B 10 C
C $\quad 60 \mathrm{C}$
D $\quad 90 \mathrm{C}$
E 150 C .
3. A lamp is connected to a constant voltage power supply. The power supply is switched on. The graph shows how the current in the lamp varies with time.
current (A)

Which row in the table shows what happens to the current and resistance of the lamp between 0.05 s and 0.45 s ?

	Current	Resistance
A	decreases	increases
B	decreases	stays the same
C	stays the same	decreases
D	increases	decreases
E	increases	increases

4. A circuit is set up as shown.

The purpose of the transistor is to
A supply energy to the circuit
B decrease the voltage across R_{1}
C change electrical energy to kinetic energy
D supply energy to the motor
E switch on the motor.

1. A toy car contains an electric circuit which consists of a 12.0 V battery, an electric motor and two lamps.

The circuit diagram is shown.

(a) Switch 1 is now closed.

Calculate the power dissipated in the motor when operating.
Space for working and answer

1. (continued)
(b) Switch 2 is now also closed.
(i) Calculate the total resistance of the motor and the two lamps.
Space for working and answer
(ii) One of the lamps now develops a fault and stops working.

State the effect this has on the other lamp.
You must justify your answer.
2. A thermistor is used as a temperature sensor in a circuit to monitor and control the temperature of water in a tank. Part of the circuit is shown.

(a) (i) The variable resistor R is set at a resistance of 1050Ω.

Calculate the resistance of the thermistor when the voltage across the thermistor is 2.0 V .
Space for working and answer
2. (a) (continued)
(ii) The graph shows how the resistance of the thermistor varies with temperature.
resistance
(Ω)

Use the graph to determine the temperature of the water when the voltage across the thermistor is 2.0 V .
2. (continued)
(b) The circuit is now connected to a switching circuit to operate a heater.

(i) Explain how the circuit operates to switch on the heater when the temperature falls below a certain value.
(ii) The resistance of the variable resistor R is now increased.

What effect does this have on the temperature at which the heater is switched on?

You must justify your answer.

1. A student sets up the following circuit using a battery, two lamps, a switch and a resistor.

(a) Draw a circuit diagram for this circuit using the correct symbols for the components.
(b) Each lamp is rated $2.5 \mathrm{~V}, 0.50 \mathrm{~A}$.

Calculate the resistance of one of the lamps when it is operating at the correct voltage.

Space for working and answer

1. (continued)
(c) When the switch is closed, will lamp L be brighter, dimmer or the same brightness as lamp M?
You must justify your answer.
2. (a) A student investigates the electrical properties of three different components; a lamp, an LED and a fixed resistor.
Current-voltage graphs produced from the student's results are shown.

Graph X

Graph Y

Graph Z

Explain which graph X, Y or Z is obtained from the student's results for the LED.
(b) One of the components is operated at 4.0 V with a current of 0.50 A for 60 seconds.
(i) Calculate the energy transferred to the component during this time.
Space for working and answer
2. (b) (continued)
(ii) Calculate the charge which passes through this component during this time.
Space for working and answer

1. Electrical storms occur throughout the world.

During one lightning strike 24 C of charge is transferred to the ground in 0.0012 s .
(a) Calculate the average current during the lightning strike.

Space for working and answer
(b) The charge on an electron is $-1.6 \times 10^{-19} \mathrm{C}$.

Determine the number of electrons transferred during the lightning strike.
Space for working and answer

1. (continued)
(c) Many tall buildings have a thick strip of metal attached to the side of the building.

This strip is used to protect the building from damage during electrical storms.

Explain how this strip protects the building from damage.
2. A student investigates the resistance of a resistor using the circuit shown.

(a) Complete the circuit diagram to show where a voltmeter must be connected to measure the voltage across resistor R .
(An additional diagram, if required, can be found on Page 33.)
(b) Describe how the student obtains a range of values of voltage and current.
2. (continued)
(c) The results of the student's investigation are shown.

Voltage across resistor $R(\mathrm{~V})$	Current in resistor $R(\mathrm{~A})$
1.0	0.20
2.5	0.50
3.2	0.64
6.2	1.24

Use all these results to determine the resistance of resistor R.
Space for working and answer
(d) The student now replaces resistor R with a filament lamp and repeats the investigation. A sketch graph of the student's results is shown.

State a conclusion that can be made about the resistance of the filament lamp.

1. The rating plate on a food blender is shown.

(a) The plugs on all modern electrical appliances in the UK are fitted with fuses rated at either 3 A or 13 A .
(i) Draw the circuit symbol for a fuse.
(ii) State the purpose of the fuse fitted in the plug of an appliance.
(iii) Determine the rating of the fuse fitted in the plug of the blender. Justify your answer by calculation.
Space for working and answer
2. (continued)
(b) The blender is connected to an alternating current (a.c.) supply. Explain in terms of electron flow what is meant by alternating current.
3. A student sets up the following circuit.

(a) The student closes switch S1.
(i) Calculate the voltage across the motor.
Space for working and answer
(ii) Calculate the power dissipated in the motor.

Space for working and answer
2. (continued)
(b) The student now also closes switch S2.
(i) Calculate the combined resistance of the two resistors.
Space for working and answer
(ii) State the effect that closing switch S 2 has on the power dissipated in the motor.

Justify your answer.

Physics
Relationships Sheet

$$
\begin{array}{ll}
E_{p}=m g h & d=v t \\
E_{k}=\frac{1}{2} m v^{2} & v=f \lambda \\
Q=I t & T=\frac{1}{f} \\
V=I R & A=\frac{N}{t} \\
R_{T}=R_{1}+R_{2}+\ldots & D=\frac{E}{m} \\
\frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots & H=D w_{R} \\
V_{2}=\left(\frac{R_{2}}{R_{1}+R_{2}}\right) V_{s} & \dot{H}=\frac{H}{t} \\
\frac{V_{1}}{V_{2}}=\frac{R_{1}}{R_{2}} & s=v t \\
P=\frac{E}{t} & d=\bar{v} t \\
P=I V & s=\bar{v} t \\
P=I^{2} R & a=\frac{v-u}{t} \\
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} & W=m g \\
P=\frac{V^{2}}{R} & E=\frac{p_{1}}{T_{1}}=\frac{p_{2}}{T_{2}} \\
E_{h}=c m \Delta T & E=m a \\
p=\frac{F}{A} & \\
p_{1} V_{1}=p_{2} V_{2} & \\
\hline
\end{array}
$$

Additional Relationships

Circle

circumference $=2 \pi r$
area $=\pi r^{2}$

Sphere

area $=4 \pi r^{2}$
volume $=\frac{4}{3} \pi r^{3}$

Trigonometry

$\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}$
$\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}$
$\tan \theta=\frac{\text { opposite }}{\text { adjacent }}$
$\sin ^{2} \theta+\cos ^{2} \theta=1$

	mn！̣ue»」 l＇8‘81 ＇ $2 \varepsilon^{\prime} 8 L^{\prime} 8$＇$Z$」」 $\angle 8$
	un！̣p！qny L＇8‘8L＇8‘Z qप LE
 て‘8‘8‘て e） 02	$\begin{gathered} \hline \text { un!!ssełod } \\ \text { L‘8‘8‘Z } \\ \text { Y } \\ \text { 6l } \end{gathered}$
mn！̣รวธิew て‘8‘Z ธW Zし	un！pos l‘8‘て EN い
（z）	 \downarrow H I
dno．g	$\begin{gathered} \text { (} 1 \text {) } \\ \text { و dno } \end{gathered}$

					$\stackrel{\text { ® }}{\text { ® }}$	0 0 0 0 0
	$\underset{\sim}{-\rightharpoonup_{\infty}^{\infty}} \stackrel{N}{\infty}$				$\stackrel{\rightharpoonup}{ \pm}$	－
					تِ	－
					$\stackrel{\rightharpoonup}{\sigma}$	0 0 0 0 0 0
					$\stackrel{\rightharpoonup}{د}$	0 1
				$\begin{array}{ll} Z_{0} & \sim \\ 0 & \mathbf{Z} \\ \hline \end{array}$	$\frac{\frac{T}{D}}{\stackrel{\rightharpoonup}{\tilde{J}}} \sim \frac{T}{D} N$	$\xlongequal{\stackrel{0}{\dot{\infty}}} \stackrel{0}{0}$

