PROPERTIES
OF MATTER

Practice Exam Questions
Physics
Section 1—Questions

Speed of light in materials

Material	Speed in $\mathrm{m} \mathrm{s}^{-1}$
Air	3.0×10^{8}
Carbon dioxide	3.0×10^{8}
Diamond	1.2×10^{8}
Glass	2.0×10^{8}
Glycerol	2.1×10^{8}
Water	2.3×10^{8}

Gravitational field strengths

	Gravitational field strength on the surface in Ngg^{-1}
Earth	9.8
Jupiter	23
Mars	3.7
Mercury	3.7
Moon	1.6
Neptune	11
Saturn	9.0
Sun	270
Uranus	8.7
Venus	8.9

Specific latent heat of fusion of materials

Material	Specific latent heat of fusion in Jkg^{-1}
Alcohol	0.99×10^{5}
Aluminium	3.95×10^{5}
Carbon Dioxide	1.80×10^{5}
Copper	2.05×10^{5}
Iron	2.67×10^{5}
Lead	0.25×10^{5}
Water	3.34×10^{5}

Specific latent heat of vaporisation of materials

Material	Specific latent heat of vaporisation in Jkg^{-1}
Alcohol	11.2×10^{5}
Carbon Dioxide	3.77×10^{5}
Glycerol	8.30×10^{5}
Turpentine	2.90×10^{5}
Water	22.6×10^{5}

Speed of sound in materials

Material	Speed in $\mathrm{m} \mathrm{s}^{-1}$
Aluminium	5200
Air	340
Bone	4100
Carbon dioxide	270
Glycerol	1900
Muscle	1600
Steel	5200
Tissue	1500
Water	1500

Specific heat capacity of materials

Material	Specific heat capacity in $\mathrm{Jgg}^{-1} \mathrm{C}^{-1}$
Alcohol	2350
Aluminium	902
Copper	386
Glass	500
Ice	2100
Iron	480
Lead	128
Oil	2130
Water	4180

Melting and boiling points of materials

Material	Melting point in ${ }^{\circ} \mathrm{C}$	Boiling point in ${ }^{\circ} \mathrm{C}$
Alcohol	-98	65
Aluminium	660	2470
Copper	1077	2567
Glycerol	18	290
Lead	328	1737
Iron	1537	2737

Radiation weighting factors

Type of radiation	Radiation weighting factor
alpha	20
beta	1
fast neutrons	10
gamma	1
slow neutrons	3
X-rays	1

6. A student is investigating the relationship between the volume and the kelvin temperature of a fixed mass of gas at constant pressure.
Which graph shows this relationship?

A volume

B volume

C volume

D volume

E volume

7. A liquid is heated from $17^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. The temperature rise in kelvin is

A $\quad 33 \mathrm{~K}$
B $\quad 67 \mathrm{~K}$
C 306 K
D 340 K
E $\quad 579 \mathrm{~K}$.
5. A syringe containing air is sealed at one end as shown.

The piston is pushed in slowly.
There is no change in temperature of the air inside the syringe.
Which of the following statements describes and explains the change in pressure of the air in the syringe?

A The pressure increases because the air particles have more kinetic energy.
B The pressure increases because the air particles hit the sides of the syringe more frequently.

C The pressure increases because the air particles hit the sides of the syringe less frequently.
D The pressure decreases because the air particles hit the sides of the syringe with less force.

E The pressure decreases because the air particles have less kinetic energy.
6. The pressure of a fixed mass of gas is 150 kPa at a temperature of $27^{\circ} \mathrm{C}$.

The temperature of the gas is now increased to $47^{\circ} \mathrm{C}$.
The volume of the gas remains constant.
The pressure of the gas is now
A $\quad 86 \mathrm{kPa}$
B $\quad 141 \mathrm{kPa}$
C $\quad 150 \mathrm{kPa}$
D 160 kPa
E $\quad 261 \mathrm{kPa}$.
5. A block has the dimensions shown.

The block is placed so that one of the surfaces is in contact with a smooth table top.
The weight of the block is 4.90 N .
The minimum pressure exerted by the block on the table top is
A $\quad 25 \mathrm{~Pa}$
B $\quad 245 \mathrm{~Pa}$
C 490 Pa
D 980 Pa
E 4900 Pa .
6. A syringe is connected to a pressure meter as shown.

The syringe contains a fixed mass of air of volume $150 \mathrm{~mm}^{3}$.
The reading on the pressure meter is 120 kPa .
The volume of air inside the syringe is now changed to $100 \mathrm{~mm}^{3}$.
The temperature of the air in the syringe remains constant.
The reading on the pressure meter is now
A $\quad 80 \mathrm{kPa}$
B $\quad 125 \mathrm{kPa}$
C $\quad 180 \mathrm{kPa}$
D $\quad 80000 \mathrm{kPa}$
E $\quad 180000 \mathrm{kPa}$.
7. A sample of an ideal gas is enclosed in a sealed container.

Which graph shows how the pressure p of the gas varies with the temperature T of the gas?

A

B

C

D

E

5. Five students each carry out an experiment to determine the specific heat capacity of copper. The setup used by each student is shown.

Student 1

Student 3

Student 2

Student 4

Student 5

The student with the setup that would allow the most accurate value for the specific heat capacity of copper to be determined is

A student 1
B student 2
C student 3
D student 4
E student 5 .
6. The mass of a spacecraft is 1200 kg .

The spacecraft lands on the surface of a planet.
The gravitational field strength on the surface of the planet is $5 \cdot 0 \mathrm{Nkg}^{-1}$.
The spacecraft rests on three pads. The total area of the three pads is $1.5 \mathrm{~m}^{2}$.
The pressure exerted by these pads on the surface of the planet is
A $1 . \times 10^{4} \mathrm{~Pa}$
B $9 . \times 10^{3} \mathrm{~Pa}$
C $7 . \times 10^{3} \mathrm{~Pa}$
D $4 . \times 10^{3} \mathrm{~Pa}$
E $8 . \times 10^{2} \mathrm{~Pa}$.
7. A solid is heated from $-15^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$. The temperature change of the solid is

A $\quad 45 \mathrm{~K}$
B $\quad 75 \mathrm{~K}$
C 258 K
D 318 K
E 348 K .
3. A student is investigating the specific heat capacity of three metal blocks X, Y and Z .
Each block has a mass of 1.0 kg .
A heater and thermometer are inserted into a block as shown.

stopclock

The heater has a power rating of 15 W .
The initial temperature of the block is measured.
The heater is switched on for 10 minutes and the final temperature of the block is recorded.

This procedure is repeated for the other two blocks.
The student's results are shown in the table.

Block	Initial temperature $\left({ }^{\circ} \mathrm{C}\right)$	Final temperature $\left({ }^{\circ} \mathrm{C}\right)$
X	15	25
Y	15	85
Z	15	34

(a) Show that the energy provided by the heater to each block is 9000 J .

Space for working and answer
3. (continued)
(b) (i) By referring to the results in the table, identify the block that has the greatest specific heat capacity.
(ii) Calculate the specific heat capacity of the block identified in (b)(i). Space for working and answer
(c) Due to energy losses, the specific heat capacities calculated in this investigation are different from the accepted values.
The student decides to improve the set up in order to obtain a value closer to the accepted value for each block.
(i) Suggest a possible improvement that would reduce energy losses.
(ii) State the effect that this improvement would have on the final temperature.
4. A science technician removes two metal blocks from an oven. Immediately after the blocks are removed from the oven the technician measures the temperature of each block, using an infrared thermometer. The temperature of each block is $230^{\circ} \mathrm{C}$.
After several minutes the temperature of each block is measured again. One block is now at a temperature of $123^{\circ} \mathrm{C}$ and the other block is at a temperature of $187^{\circ} \mathrm{C}$.
Using your knowledge of physics, comment on possible explanations for this difference in temperature.
3. A washing machine fills with water at a temperature of $15 \cdot 0^{\circ} \mathrm{C}$.

The water is heated by a heating element.

(a) The mass of the water in the washing machine is 6.00 kg .

Show that the minimum energy required to increase the temperature of the water from $15 \cdot 0^{\circ} \mathrm{C}$ to $40 \cdot 0^{\circ} \mathrm{C}$ is 627000 J .

Space for working and answer
3. (continued)
(b) The heating element has a power rating of 1800 W .
(i) Calculate the time taken for the heating element to supply the energy calculated in (a).

Space for working and answer
(ii) Explain why, in practice, it takes longer to heat the water from $15^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ than calculated in (b)(i).
3. A bicycle pump with a sealed outlet contains $4 \cdot 0 \times 10^{-4} \mathrm{~m}^{3}$ of air.

The air inside the pump is at an initial pressure of $1.0 \times 10^{5} \mathrm{~Pa}$.
The piston of the pump is now pushed slowly inwards until the volume of air in the pump is $1.6 \times 10^{-4} \mathrm{~m}^{3}$ as shown.

During this time the temperature of the air in the pump remains constant.
(a) Calculate the final pressure of the air inside the pump.

Space for working and answer
(b) Using the kinetic model, explain what happens to the pressure of the air inside the pump as its volume decreases.
3. (continued)
(c) The piston is now released, allowing it to move outwards towards its original position.

During this time the temperature of the air in the pump remains constant.
Using the axes provided, sketch a graph to show how the pressure of the air in the pump varies as its volume increases.

Numerical values are not required on either axis.
(An additional diagram, if required, can be found on Page 28)

Physics
Relationships Sheet

$$
\begin{array}{ll}
E_{p}=m g h & d=v t \\
E_{k}=\frac{1}{2} m v^{2} & v=f \lambda \\
Q=I t & T=\frac{1}{f} \\
V=I R & A=\frac{N}{t} \\
R_{T}=R_{1}+R_{2}+\ldots & D=\frac{E}{m} \\
\frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots & H=D w_{R} \\
V_{2}=\left(\frac{R_{2}}{R_{1}+R_{2}}\right) V_{s} & \dot{H}=\frac{H}{t} \\
\frac{V_{1}}{V_{2}}=\frac{R_{1}}{R_{2}} & s=v t \\
P=\frac{E}{t} & d=\bar{v} t \\
P=I V & s=\bar{v} t \\
P=I^{2} R & a=\frac{v-u}{t} \\
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} & W=m g \\
P=\frac{V^{2}}{R} & E=\frac{p_{1}}{T_{1}}=\frac{p_{2}}{T_{2}} \\
E_{h}=c m \Delta T & E=m a \\
p=\frac{F}{A} & \\
p_{1} V_{1}=p_{2} V_{2} & \\
\hline
\end{array}
$$

Additional Relationships

Circle

circumference $=2 \pi r$
area $=\pi r^{2}$

Sphere

area $=4 \pi r^{2}$
volume $=\frac{4}{3} \pi r^{3}$

Trigonometry

$\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}$
$\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}$
$\tan \theta=\frac{\text { opposite }}{\text { adjacent }}$
$\sin ^{2} \theta+\cos ^{2} \theta=1$

	mn！̣ue»」 l＇8‘81 ＇ $2 \varepsilon^{\prime} 8 L^{\prime} 8$＇$Z$」」 $\angle 8$
	un！̣p！qny L＇8‘8L＇8‘Z qप LE
 て‘8‘8‘て e） 02	$\begin{gathered} \hline \text { un!!ssełod } \\ \text { L‘8‘8‘Z } \\ \text { Y } \\ \text { 6l } \end{gathered}$
mn！̣รวธิew て‘8‘Z ธW Zし	un！pos l‘8‘て EN い
（z）	 \downarrow H I
dno．g	$\begin{gathered} \text { (} 1 \text {) } \\ \text { و dno } \end{gathered}$

					$\stackrel{\text { ® }}{\text { ® }}$	0 0 0 0 0
	$\underset{\sim}{-\rightharpoonup_{\infty}^{\infty}} \stackrel{N}{\infty}$				$\stackrel{\rightharpoonup}{ \pm}$	－
					تِ	－
					$\stackrel{\rightharpoonup}{\sigma}$	0 0 0 0 0 0
					$\stackrel{\rightharpoonup}{د}$	0 1
				$\begin{array}{ll} Z_{0} & \sim \\ 0 & \mathbf{Z} \\ \hline \end{array}$	$\frac{\frac{T}{D}}{\stackrel{\rightharpoonup}{\tilde{J}}} \sim \frac{T}{D} N$	$\xlongequal{\stackrel{0}{\dot{\infty}}} \stackrel{0}{0}$

